finishing.com -- The Home Page of the Finishing Industry

HomeFAQsSuggested
Books
Help
Wanteds
Advertise
on this site
FORUM
current topics

60,000 Q&A topics -- Education, Aloha, & Fun

topic 4913 p.3

DIY Nickel plating onto steel



< Prev. page          (You're on the last page of the thread)


A discussion started in 2000 but continuing through 2020

April 12, 2013

Q. I recently tried to nickel plate several steel parts and 2 brass rods about 5" long x 1/8" Dia. all in the same bath and at the same time. I left them in for about 30 minutes, 4 volts, 1.2 amp. The steel parts plated fine but the brass didn't take the nickel. Any answers as to why. They were highly polished. Should I have blasted them before plating? Also, how do I know a bath is worn out. The 6" nickel anode I'm using doesn't seem to be deteriorating at all. Thanks for your help. Bob

Bob Benedict
- Humboldt, Tennessee, USA


September 4, 2013

Q. Ted

I wanted you to know your site help me greatly a few years ago when I was setting up a Wood's Nickel Bath. Thanks for being patient and not responding negatively to some of the inputs. Some people have no respect. I set up the bath at 59 grams of nickel per liter. It has risen to the low 70's due to anode etching. We keep the % free acidity at approximately 14 %. I was planning to remove some of the nickel back to 59 g/l. I haven't seen any problems with the high nickel content. I would like your comments on this. Thanks again

Dickie

Dickie Martin
- Laurens, South Carolina, USA


affil. link
"Electrodeposition: The Materials Science of Coatings and Substrates"
by Jack Dini
from Abe Books
or
info on Amazon
or
see our Review

September 5, 2013

A. Hi Dickie. I'm feeling old today because I remember Donald Wood (dec.), the inventor of Wood's Nickel, very well. I lived near a farm stand / pie stand and would sometimes bring him his favorite, pumpkin pie, when I visited his shop.

Wood's nickel is not intended to be a plating solution, but a strike solution for activating stainless steel and old nickel plating. The reason it is low in nickel content is so the HCl can attack the substrate and get it active and keep it active until it has some new nickel plating on it. So, you judge the effectiveness of Wood's Nickel by the adhesion it offers. If it's doing what you need it to do, it's probably okay. Jack Dini's "Electrodeposition" has a great chapter titled "Adhesion" which deals with Wood's Nickel quite deeply.

Regards,

Ted Mooney, finishing.com Teds signature
Ted Mooney, P.E.
finishing.com - Pine Beach, New Jersey
Striving to live Aloha



November 23, 2015 -- this entry appended to this thread by editor in lieu of spawning a duplicative thread
4913-6

Q. I recently attempted electroplating an old single cylinder engine head. The head is cast iron, and originally came plated, but essentially all that was left of the original plate was where the hex bolt heads had it covered up (engine is about 100 yrs. old).

I used pure nickel in the recipe for nickel acetate, along with vinegar.
My setup was amateurish, (five gallon plastic bucket, with 5 nickel plates suspended in the solution from copper wire, which I connected to a low volt wall charger + wire.
Negative hookup on the object was a cleaned nickel 55 welding rod bent to fit securely in one of the bolt holes on the head.

After about 2 days, the head seemed to be plated nicely, and polished up quite well. 2-3 days after that, I noticed a very light brownish powder in spots on the finish.

I wonder if the nickel plate is not thick enough, or would the major mistake be using less than a pure nickel rod for the negative hookup? Content of the negative rod is 55% Ni, with the remainder being iron, and several trace minerals, including copper.

I also had earlier plated two pipe fittings for the engine with the same setup, and haven't noticed any "rust" powder appearing on these.

Thanks for any help/advice

Truman Dodson
Rebuilding vintage engines - Scarbro, West Virginia USA



September 16, 2017

Q. How do you test the nickel content of your solution?
I have been lucky enough to have been given a few liters of premixed nickel plating solution, brightener and some copper plaiting solution formulated by an industrial chemist :) The stuff works a treat however down here in NZ finding pure nickel to use as an anode is not an easy task.

For the anode I ended up getting my hands on some nickel battery strapping. This is 99.95% pure and seems to be working well so far.

Having done a fair amount of copper electroforming and battling with oversaturated copper solutions I was wondering if the same thing happens with nickel and if so how can you test and balance the solution?
Im not overly keen on having to build a backyard mass spectrometer at the moment but it is on the long list of toys to add to the workshop :)

Boris van Galvin
evil genius - Howick, Auckland, New Zealand


September 2017

A. Hi Boris. It is very unlikely that your nickel anode will dissolve too readily. It is customary to use sulfurized nickel anodes to assist in dissolution because the problem is usually the opposite.

Please study up on "Hull Cell". I think your next step should be to build a backyard Hull Cell rather than a backyard mass spectrophotometer :-)

Luck & Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading


September 16, 2017

Q. Thanks Ted :)
I will see if I can locate some sulfurized nickel locally. I did a few test plates last night with the setup I have that seemed to work quite well; however, the second piece, which was an electroformed copper acorn, started to get a nice layer on it then for some reason the nickel started to get stripped back off mostly around where the cathode was attached. It left a pretty awesome effect but was not ideal.

Not sure if this is a result of a depletion of the nickel in the solution, a power supply issue or some other problem.

Boris van Galvin [returning]
- Pakuranga, Auckland, New Zealand


September 23, 2017

Q. Finally I have managed to locate some nickel locally however it came in the form of small blocks and not strips. they are about 25 mm X 25 mm X 15 mm thick so for my home setup these will last a long time...

Currently my bath is a pyrex jar. It was great for strip, however, with these anodes it's going to be a little harder to join them. So I had several thoughts...

Drill a hole in them and string them together along a stainless rod was my first thought but I was not sure if the stainless is going to break down and start to contaminate the nickel. I thought about getting some titanium but that comes at a pretty high cost down here.

If however Stainless does not break down I was thinking about maybe making a stainless bath and just dropping the anodes in to the bottom; then all I need to do is connect the bath to the + of the supply and start plating.

For the time being I may just run a sealant in the outside of the stainless shaft so it does not come in contact with the solution but would like to find a better alternative.

I would appreciate any advice on this...

Boris van Galvin [returning]
- Pakuranga, Auckland, New Zealand


Digital version
mfg_online

(No longer published, but a copy is on Academia.edu)
Download it before it disappears.

September 2017

Hi again. You are certainly welcome to design things any way you wish and experiment with them, Boris.

But I think you will make it difficult on yourself if, instead of starting with conventional practice and modifying it as necessary for economy and your situation, you instead re-invent the art starting from nowhere.

Please get hold of a plating book like the Metal Finishing Guidebook =>
to see how & why things are normally done, and then you'll be in a better position to make any necessary modifications. A stainless steel tank has no shot at proper plating of any item with any metal; and a submerged stainless steel anode rod in an acidic solution won't work either. Good luck!

Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading


September 25, 2017

Q. Thanks again Ted,

As stated the solution I have is premixed from a supplier of plating solutions, was put together for me by an industrial chemist along with a bottle of brightener.

4913-7

Using a Nickel anode and the the plating power supply I built with regulated voltage and current I get a really nice layer of Nickel on parts, this includes the plastic parts that have been coated in a layer of graphite to bring their surface resistance down to about 300 Ohms.

The voltage is set on the supply to about 3V and the current is reduced dependent on the size of the object. The nickel deposits using this method are coming out consistently at about 35 microns. I have however also managed to do a couple of test parts where the plating was a lot thicker but did find that there seemed to be a lot of internal stress on the plastic part as it seemed to warp slightly. This may or may not have been as a result of the plating and I have not had the chance to reprint the test piece to see if it was.

Ideally I would like to use a titanium mesh to hold the anode in the solution but in New Zealand it's not viable to purchase this in small quantities and a large amount is just not viable.

The tank I used when I did my apprenticeship many many moons ago was a plastic tank with a kind of canvas liner with all of the nickel anodes stacked around the edges. The + was feed in to the tank at one end and all of the nickel "bricks" made contact with each other. This however is only really viable for a larger tank.

We used a stripping tank that was made from Stainless Steel and filed with cyanide. My thoughts were to look at making a small stainless tank and lay all the nickel anodes in the bottom and around the sides at strategic points. this would mean they would all be connected to the + via the stainless tank wall however I was not sure if the stainless would be eroded and contaminate the plating solution.

Boris

Boris van Galvin [returning]
- Pakuranga, Auckland, New Zealand



How to calculate amperage/voltage for Watts Nickel?

November 30, 2017

Q. I am trying to nickel plate steel bicycle parts, I have the Watts bath prepared and the water tank heater ready to go. I bought a variable DC power source but my question is what should I have it set to and how long should I run it. I am doing this in about 1 gallon of solution. The surface area that I want to plate is about 20 sq inches.

Side question is, how many times is the Watts bath solution good for? How many times can I plate something in it before having to dump it and mix a fresh batch?

Thanks so much for your help.

Andrew Koltuniak
- San Francisco California , USA


November 2017

A. Hi Andrew. Let me take your last question first because it will make some other things that people have said a bit clearer: your plating bath can theoretically be used every day for decades ... and industrial platers often achieve exactly that. In industrial plating, one of the goals of the process control is equilibrium -- the solution operates at the same temperature, same pH, same nickel concentration, and same current density every hour of every day, year in and year out.

Sometimes hobbyists will tell us we're full of beans and "you really don't have to worry about blah blah blah". And they're not exactly wrong -- you can often get a good part without ideal conditions, but the goals in industrial plating is every piece is a good piece, you can't afford to wreck your solution and waste treat hundreds or thousands of gallons. A hobbyist can perhaps use an old chunk of nickel as an anode whereas the industrial plater must use nickel "S rounds" or other highly purified sulfurized nickel or he will have ever increasing problems every day :-)

Regarding current and voltage, the first question is whether the part must come out of the tank bright & shiny or you are willing to buff it. If it must be shiny, you'll need to plate at 30 - 40 amps per square foot of surface area. If you can buff it, you can plate at half that rate or lower, and encounter fewer problems. The voltage is whatever is needed for the current density you want, and depends on the anode to cathode spacing, but will probably be about 3 or 4 volts in a 1-gallon tank. As for plating time, look at the "Electrochemical Equivalents" chart in the appendix of The Metal Finishing Guidebook (download it while it's available) and you will see a chart of plating thickness vs. amp-hours; it will be a good start. Good luck.

Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading


How to clean parts before plating them?

December 2, 2017

Q. I am nickel plating steel bicycle parts, the steel is new and I have sanded and cleaned it to a smooth finish. What else do I need to do to prepare the part for plating? Thanks

Andrew Koltuniak [returning]
- San Francisco California , USA


December 2017

A. Hi again Andrew. If you can reach the whole surface of the part, cleaning it abrasively like that is a possibility. Sanding alone, then rinsing, may work. But after sanding, or in lieu of sanding if the part is free of scale, you can use a scrub brush with hot water, a little detergent, and powdered pumice (make sure to wear gloves to avoid finger oils). Rinse, and do the plating immediately after the cleaning.

It's when you can't get to the whole surface, or manual cleaning is too laborious, that chemical cleaning becomes necessary.

Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading


Chemical amounts for my solution

December 3, 2017

Q. Hello again, one more question, I have ordered two pounds of Nickel Sulfate, a pound of Boric acid and one pound of Nickel Chloride. I fear that I under calculated the amount. I need 2 gallons of solution and based on what I have seen here and other places I will need about 72 ounces of sulfate, 24 ounces of chloride and 12 ounces of Boric acid to mix with 2 gallons of distilled water. Do these amounts seem correct? If not please tell me how much you would use for a 2 gallon Watts bath.

Thanks again.

Andrew Koltuniak [returning]
Bicycle frame builder and finisher - San Francisco California , USA


December 2017

Hi again. As noted above, a typical Watts Nickel bath is:
- 225 to 300 g/l NiSO4.6H2O (nickel sulfate hexahydrate)
- 37 to 53 g/l NiCl2.6H2O (nickel chloride hexahydrate)
- 30 to 45 g/l H3BO3 (boric acid)

270 g/l would be 270/28.3g/oz or 9.54 oz/l,
   which would be 9.54 x 3.79 l/gal or 36 oz/gal,
      which would be 72 oz for two gallons.

Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading



Change salts in Watts nickel bath to acetate

April 6, 2018

Q. Hi all. I'm a hobbyist and have plated a few parts, but mostly only plate out of curiosity and not functionality. I've been using a Watt's bath, but also have done the Nickel Acetate experiment. My question is... Is it possible to use different salts in a Watt's bath such as directly substituting nickel acetate for nickel sulfate? I believe I read other salts do not have as high of a deposition rate, but that wouldn't be an issue for me. Would maximum plating thickness be affected or anything else? Also, what would happen if I combined my leftover nickel acetate solution with my nickel sulfate solution? I do not want to try for fear of ruining my sulfate solution.

Cortez Gonzalas
Hobbyist - Youngstown, Ohio, USA


April 2018

affil. link
The Properties of Electrodeposited Metals and Alloys
by William Safranek
from Abe Books
or
info on Amazon
or
safranek book
see our review

A. Hi Cortez. As a semantics matter it's no longer a Watt's Nickel bath once you add acetate :-)

William Safranek's "The Properties of Electroplated Metals and Alloys" is an interesting work which focuses on what happens to the electrodeposited layer when you change this and that =>
His Nickel plating chapter alone is 74 pages. It presents data on acetate baths but there are so many potential variables in plating that discussing mixing an acetate bath with a Watt's bath didn't make the cut.

So, I doubt that you will find anyone who can tell you the specific effects of mixing them, and I doubt that your hobbyist plating is controlled closely enough to really learn anything new by mixing them either. If you intend to continue your nickel plating and improve it and learn from it, I would not mix them.

Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading



wikipedia
Meccano

Meccano

April 12, 2018

Q. Hi, I have been replating some old (1910s - 1920s) Meccano in Nickel - as it was originally manufactured - using the Watt's bath with pretty consistent success. The set up I have can cope with the smaller items - up to 6 inches, but not the larger pieces. It is a 2 litre glass beaker sitting on a stirrer hotplate - to agitate and get the temperature up to around 50 °C (I am a Chemistry teacher so have access to the normal lab kit which the average DIYer would not).

I have just put together a larger plating bath, but I don't have a big enough glass vessel so have put it in a plastic tub, unfortunately I can't heat this with the hotplate (though I can still agitate as before with a magnetic flea).
My question is therefore, how important is it for the Nickel plating process to have the bath at 50 degrees - if I ran it at ambient temperature (my garage would typically be 10 °C) what effect would that have on the plating - slow it down or make it not work at all? Any thoughts would be gratefully received. By the way I am only after a thin coating, so run the bath for 5 - 10 minutes for each piece at the lower end of the recommended current density range (which approximates to about 4 volts typically).
Kind regards
Andy

Andy Johnson
- Godalming, Surrey, UK


A. Hi Andy. The usual temperature for professional nickel plating is actually 60 °C, not 50 °C. I can quickly think of three reasons that professional platers exercise tight control over the temperature and other operating conditions:
1). For the best deposit properties.

2). To allow continuing operation all day without constant work stoppage for overheating, raising/lowering concentration, raising/lowering pH, carbon treatment, and other interruptions;

3). To prolong solution life; they want their process solutions to last months, years, or decades without need for dumping and waste treatment.

Consider for a second what would happen if a production plater tried room-temperature nickel plating: with all the Kilowatts of plating power they put into the operation, they could only operate for a short while before the bath temperature rose to a very different temperature range; their only options would be to either stop plating to let it cool, install mechanical refrigeration, or simply suffer whatever consequences varying temperatures might cause (variations in solution concentration, degradation of brighteners, different deposit properties, etc.).

So, when hobbyists ask if they can 'get by' without doing this-or-that or without controlling for this-or-that, the answer might be that there are so many variables, from concentration to pH to current density to type of brighteners to temperature to metallic impurities, that professionals simply might not know because they can't afford to let parameters become uncontrolled and they've never tried it :-)

IN general, low temperatures cause significantly slower plating, difficulty keeping enough boric acid dissolved for good buffering, and very high tensile stress in nickel deposits -- but those things may not be a killer for you. Good luck.

Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading



March 31, 2020

thumbsdown This site should really just become a paid membership only access. I hear your arguments, though they're rather weak! The plating industry was conceived first by people who had a thirst for curiosity and experimentation. And I love how the plating pro's here get up on their soapboxes and preach about responsible handling of plating bath chemical waste. Since when did the plating industry give two shits about our environment? Gee mid-70's, sound right? Huh? What do you thunk brought all the severe regulations you have to face in this day and age? So from the turn of the century (late 1800's into 1900's) all the way to mid 1970's you guys (industry) polluted our environment without any regard for the future. So don't bitch about how expensive it is to dispose of your waste in a responsible manner! You (industry) brought that upon yourselves!

As far as the process of electro-plating goes, it really isn't a complex process and yes you can achieve very good results without the fancy proprietary chemicals! Also the truth is that most municipalities' wastewater treatment plants can handle most common metal salts if a DIY'er should be so careless as to dump his plating solution down the drain. Believe me, if an individual was doing this on a regular basis, the utilities company would eventually show up to your residence along with investigators and regulators and you will be fined heavily. Possibly could face criminal charges. But for small quantities of do-it-yourself plating solutions, it is very easy to neutralize those solutions and render them safe.

In fact, I bet one of those 10 yr olds that you keep speaking of who are learning the fundamentals of plating from your FAQ's could turn their solutions into oh, I don't know, say fertilizers for their house plants. For what they are, nothing more than metal salts. Most minerals that are found underground and in the soil all around are also various metal salts.

Now you're right Ted, I also learned how to copper plate a key with nothing more than a couple D-cells, a penny, some wire and a little pinch of Cu(II)SO4 from my chemistry set. I believe I was 11 or 12 at the time. The result not being useful for anything other than learning some fundamental principles of chemistry and physics. There is absolutely nothing wrong with hobby plating by individuals and with just a little bit more knowledge on the subject and a nice regulated linear DC power supply, an individual can achieve fantastic results even using those old archaic recipes you so sharply mention! I cannot think of another industry shrouded in so much secrecy and effort to keep the chemistry unpublished as the plating industry practices. It's sad really, because that concept of thinking has only stifled your ability to discover newer and better processes in a more timely fashion.

Lastly, maybe the fact that so many individuals having a need or desire for one or two simple items to be plated should tell you (the industry) that you're missing out on a growing untapped customer base! It's absurd the prices I've been quoted for having a part which I machined and about the size of my middle finger to have plated!

Yeah, here is a disclaimer: If you are an individual who desires hobby plating at home, then leave this site now! You eon't get the help you are seeking from this site. Finishing.com is for professionals ONLY who work in, or operate a commercial plating operation.

Thanks!

Todd Schneider
- Colorado Springs, Colorado U.S.A



Hobby nickel plating is taking days

May 9, 2020

Q. Hi,

I've been doing some nickel plating lately. Initially, I did the typical homebrewed version with vinegar and nickel electrolyte with OK results after some trial and error. However, upon getting more serious and hoping for better results, I bought a nickel kit with professional nickel salts and an 86 °F aquarium heater.

Results have not been good.
-There are no hydrogen bubbles forming that can be seen by eye.
-Plating is horribly slow, taking days to build a rust protective layer.
-Parts tend to form small pits (almost with appearance of casting pores).
-There is a horrible roughness on the surfaces. I've gotten a sense this is mostly on the upper part as it sits in the bath.

I have tried reading up on this, but it's hard to figure out the cause.
Could I have too low pH? It seems I still have some white powder in the bath that has failed to dissolve.
The anode is like a net shape, and tends to dissolve in an uncontrolled manner. I have speculated if this is what is causing the roughness on parts, but this is just speculation.

Any help is appreciated. Thank you very much.

Johan S
- Sweden


May 2020

A. Hi Johan. This is a place of camaraderie, so full name and town please.

a). My guess is that your power supply is not putting out anywhere near the necessary amperage because, if it did, the power would have to go somewhere -- either nickel deposition or generation of hydrogen bubbles. Please see our FAQ on Faraday's Law.

b). The white powder might be boric acid (a buffer). Its solubility is highly temperature dependent; so if you're operating at 86 °F rather than 140 °F it is very likely to remain largely undissolved.

c). Professional platers use both anode bags and constant filtration to remove particles, so roughness can easily happen if you have neither.

d). When you reduce the plating time to under an hour, rather than days, things may get better. Good luck.

Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading



July 14, 2020

Q. Hi finishers,
Got a little restless during lockdown here and started revamping an old style heavy duty pasta roller.
I've stripped the powder coat off the steel side plates and am now trying to do a home job of nickel plating them. I figured this should be pretty food safe and can avoid the flakes of blue powdercoat coming off in my pasta.
The surface area of each plate is 800 cm2.

I'm gonna plate in watts nickel plating solution, my recipe for 4L being:

1kg nickel sulphate hexahydrate
0.16kg nickel chloride hexahydrate
0.13kg boric acid

According to the (very excellent) nickel plating handbook I will need a cathode current density of 2 A/dm2 using the Watts solution.
So my cathode will be 800 cm2 = 8 dm2 so therefore I need a power supply capable of delivering 16 A.
Problem is I only have a 0-32V 0-5A adjustable power supply. It is both voltage and amperage adjustable.
SO!
question is, if I go ahead using my 5 A max power supply: will the lower cathode current density merely slow down the deposition of nickel onto my cathode but still give nice results or will I have real problems doing a nice job?

4913-8

I've already spent quite a bit of money ordering chemicals and nickel anodes and whatnot and don't really want to buy a high amperage power supply in order to do this :(
I even have a sous-vide cooker to setup a bain marie bath at the right temp.

David McGrath
- Melbourne, Australia


July 2020

A. Hi David. You wouldn't send someone onto Master Chef trying a dish by reading it out of a cookbook ... you probably wouldn't even let them serve it to a large party.

That, rather than the size of the power supply, is the salient point to me. You practice plating on scrap or something of no importance; and after you feel that you've learned enough to apply some personal knowledge to the problem, only then do you try plating your important components. So plate something at 2 A/dm2, then plate another at 5/16 x 2 A/dm2 = 0.625 A/dm2 and decide for yourself whether it will work. My answer is that the current density will be fairly far down the list of potential problems, but yes it will work if you have otherwise learned to do nickel electroplating. You might want to banter with Dave S on thread 26881. Best of luck with it.

Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading



Badly nicked plated steel parts

August 5, 2020

Q. I posted a few weeks back seeking advice on a home nickel plating setup - it was to plate an antique pasta machine I'm restoring. I ended up returning all the chemicals and other crap for the home plating rig when I found a plating shop willing to do the job for much, much cheaper than I was originally quoted.
It ended up costing $120 to plate 3 items: 2 steel plates (21 x 27cm) and a cast iron wheel.
The cast iron wheel looks OK but has some rust spots in places but the steel plates have lots of bright orange rust all around the edges and lighter blooms can be seen in many places.
I said this to the plater when I paid/collected them this morning and he told me they would just wipe them off with water.
I wiped with water and brake cleaner and of course it did not work.
Taking them back tomorrow. They told me over the phone they will try to fix it.
I've spent $90 having these parts blasted and a further $120 on the plating.
What would need to be done to fix this? it's a real mess I think and feel quite ripped of by the experience?
Any advice on what I should say to the plater?

David McGrath [returning]
- Melbourne, Australia



September 29, 2020

Q. Hi, Karl in Miami here. Have 1980 Porsche 911 with the original sacrificial plating on many parts having run its course. To preserve this vehicle as long as possible, I'm dedicated to an ongoing preservation that now entails electroplating. Various nickel plating articles have been studied. What I've arrived at is shared below.
QUESTION here is whether I'm 'on the right track' or 'no, you're not'. I'll continue researching in the direction(s) pointed to.

Am dealing first with steel fuel rails that average roughly 1" x 1" x 14" with a few slight protrusions.

4913-9b 4913-9a

Am inclined to nickel plating primarily for corrosion protection. Nickel's silver colored finish is nicely suitable to the arena these parts are in. Whether final plated tone ends up light or dark doesn't matter. A tight surface -- silky-smooth finish --is considered better than rough/matte for the sake of shedding debris. I know nickel is a 'sealer' rather than sacrificial plating so zero pinholes are tolerable for a world-class outcome. This demand concerns me more than anything else. Am shooting for a 0.001" deposit, a measure I have read being regarded as 'excellent' (where nickel applied for corrosion protection is concerned.) Half that measure is 'acceptable' (according to same article.) Respecting there being a formula for calculating thickness, am more inclined to carefully remove the part from the electrolyte and measure the same spot again and again with a stainless steel caliper, proceeding with plating for however long is required to achieve the 0.001" plating. Will include sodium lauryl sulfate in electrolyte to facilitate the cathode's bubble shedding---again, I'm pin-hole terrified.

affil. link
Nickel Plating Solution


affil. link
Nickel Plating Solution

Rather than buy electrolyte, am thinking to make it with white vinegar, sodium lauryl sulfate powder, and nickel strip anodes. Equipment on hand: rectifier, voltmeter, glass encased heater, glass thermometer, aquarium-type aeration, clear plastic tub, and titanium suspension/connection wiring. For the sake of creating a more consistent plating thickness, I plan to rotate/move the cathode---perhaps the anodes as well---on occasion (to change their relationship to each other.)

Am not dealing with prep here---I know the elimination of surface contaminants is imperative to a productive outcome.

This said, am questioning if I'm on or off track to get a pin-hole-free nickel plating?

Karl Hansen
- Miami, Florida


September 2020

A. Hi Karl. Zinc plated fuel rails are a better idea because zinc is a sacrificial coating rather than a barrier layer coating. But if you're going with nickel for the look, 0.001" is a lot and should be enough for "pore-free". Still, I'd suggest that you go to a hobby plating or jewelry plating supplier for a nickel plating solution rather than trying to make your own from vinegar and nickel.

Luck & Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading


October 1, 2020

thumbs up sign Thanks for your advice Ted---will act on that.

Karl Hansen [returning]
- Miami Florida



Yellow chromate vs nickel

October 1, 2020

Q. Hi,

I am learning how to plate zinc and nickel for my stuff but I have a question about corrosion resistance. I am wondering about yellow chromate (after zinc plating) vs plating with nickel after zinc plating. I am using DIY solution found on the web. I am plating automobile stuff to protect against North-east road salt. My current thinking is that zinc plating and then nickel plating on top of that is okay; is this reasonable? I am definitely not an expert here. Perhaps I should paint my stuff after plating to further protect against rust? Thanks for any advice.

Best,
Chris

Chris Haidinyak
- Ballston Lake, New York


October 2020

A. Hi. Plating nickel onto zinc plating will probably prove undoable or highly problematic. You'll surely be better off zinc plating, chromating, and painting.

Luck & Regards,

pic of Ted Mooney
Ted Mooney, P.E. RET
finishing.com - Pine Beach, New Jersey
Aloha -- an idea worth spreading

none
--
adv. 
spacer gets replaced with bannerImages

Q, A, or Comment on THIS thread SEARCH for Threads about ... My Topic Not Found: Start NEW Thread

Disclaimer: It's not possible to diagnose a finishing problem or the hazards of an operation via these pages. All information presented is for general reference and does not represent a professional opinion nor the policy of an author's employer. The internet is largely anonymous & unvetted; some names may be fictitious and some recommendations may be deliberately harmful.

  If you need a product/service, please check these Directories:

JobshopsCapital Equip. & Install'nChemicals & Consumables Consult'g, Train'g, SoftwareEnvironmental Compliance


©1995-2020 finishing.com, Inc., Pine Beach, NJ   -   About finishing.com   -  Privacy Policy
How Google uses data when you visit this site.