No registration, no passwords; no pop-up ads -- just aloha, fun, & authoritative answers.
As an eBay Partner & Amazon Affiliate we receive compensation for qualifying purchases.
Home /
T.O.C.
FAQs
 
Good
Books
Ref.
Libr.
Advertise
Here
Help
Wanted
Current
Q&A's
Search 🔍
the Site
pub  Where the world gathers for
plating, anodizing, & finishing Q&As since 1989





-----

Penetration And Growth Ratio on Aluminum Oxiding




Could I get an answer on penetration and growth ratio on aluminum oxiding set up to run in the proper conditions in accordance with MIL-A-8625 / MIL-PRF-8625 [affil link or DLA] type two and type three anodizing?

I know hardcoat is a lot thicker, but what is the ratio on both types? I have heard that hardcoat anodizing has 50% inward (penetration), 50% outward (growth) and regular anodizing is 1/3 inward and 2/3 outward. Is this correct?

A response would be greatly appreciated. Thank You!

Charles Schwartz
- Madison Heights, Mi USA
2001



2001

The percent dimensional increase of an oxide formed under 'typical' Type III conditions (200 g/L sulfuric acid, 24 to 40 ASF, 32 °F) is about 50%. The penetration and outward growth are roughly equal. For Type II coatings the current density affects the percent dimensional increase (higher current density = more outward growth) but a 33 to 40% dimensional increase is to be expected.

You will have about 1/3 growth and 2/3 penetration, which is the reverse of what you have written. The difference in outward growth between Type II and Type III oxides is largely attributed to the increase in solvent action of the sulfuric acid as the temperature of the electrolyte is increased.

Here's a recent paper on the question. L.Zhang and S.H. Zhang, "Dimensional Changes of Anodized Aluminum", AESF SUR/FIN '99 Conference, Cincinnati, OH, June 1999.

Feel free to contact me for a copy.

Sjon Westre
- Minden, Nevada




(No "dead threads" here! If this page isn't currently on the Hotline your Q, A, or Comment will restore it)

Q, A, or Comment on THIS thread -or- Start a NEW Thread

Disclaimer: It's not possible to fully diagnose a finishing problem or the hazards of an operation via these pages. All information presented is for general reference and does not represent a professional opinion nor the policy of an author's employer. The internet is largely anonymous & unvetted; some names may be fictitious and some recommendations might be harmful.

If you are seeking a product or service related to metal finishing, please check these Directories:

 
Jobshops
Capital
Equipment
Chemicals &
Consumables
Consult'g, Train'g
& Software


About/Contact  -  Privacy Policy  -  ©1995-2024 finishing.com, Pine Beach, New Jersey, USA  -  about "affil links"