Home /
Search 🔍
the Site

Free personalized metal finishing help!

Caustic Etch Analysis -- aluminium anodizing


Current postings:

August 9, 2021

Q. I've seen phenolphthalein mentioned in a couple locations now (here, and on Anoplex website "Caustic Etch Titration" page) regarding caustic etch titration. It seems there are numerous different preparations available. Which preparation should be used for this?

Our machine shop has just started up a small anodizing line to bring in house the anodizing of one product we're making. We were running successfully for a few weeks at the start, but are now learning the failure points (we knew that would happen) and starting to learn how to analyze and manage them. One issue seems to be that the caustic etch bath has become weak and less effective (not removing as much material as before, less visible effect on surface of parts).

Kevin Enter
- Cambridge, Ontario

August 14, 2021

A. Titrate with 1 ml sulfuric acid 2 2 ml of sodium hydroxide bath to determine the aluminum content.

Mack Goldrick
Titration - Newbedford, CT

Closely related historical postings, oldest first:

April 9, 2010

Q. I've become responsible for doing this - there are many ambiguities. "Free" sodium hydroxide..."total" sodium hydroxide...my heads in a maze. I have finally managed to get the "right" answer (what the production manager expected) by titrating a 5 ml sample with 1 N NaOH to a phenolpthalein endpoint, and multiplying the titrated volume by 5.1. I do not know where this factor comes from; or its chemical significance.

The vendor provided another procedure that dictated titration to a pH of 11.0 (by pH meter) that yielded consistently low results.

Does anyone out there have any helpful words of wisdom?


dave wichern
Dave Wichern
Consultant - The Bronx, New York


April 13, 2010

A. Hi Dave,

Assuming that you are talking about a Sulfuric solution, Total acid is the amount that you titrate and includes the acid that is tied up with the aluminum in the solution. Free acid analysis adds some KF solution which ties up the aluminum, so you only titrate the free portion of the acid. You use the same end point. Multiply both titrations by 1.308 to get the answers in oz/gal. Subtract the free (ml) from the total (ml) and multiply that by 0.240 to get the oz/gal of aluminum in the solution.

The pH meter was not calibrated correctly or was a very poor one or you would have ended up with an answer significantly higher than the phenolphthalein end point which is 8 - 10. Remember that pH is logarithmic.

Source was the 99 edition of Metal Finishing Guidebook.

James Watts
- Navarre, Florida

April 13, 2010

A. Hi Dave

I do know that there are typically other things in caustic etch baths that contribute to the alkalinity during an acid-base titration. They are things like dissolved aluminum or maybe sodium sulfide. I have seen references to an "N1/N2" titration which I think allows the titration measurement of aluminum and sodium hydroxide. I believe that we tend to use titration to approx. 10 or 11 using 1N H2SO4 to get values for "free NaOH".


Terry Tomt
- Auburn, Washington

April 13, 2010

A. Dave

The 5.1 is an "X" factor that yields a value with a unit of measure. Might be g/l. You'll notice that as your aluminum content builds up, the (first) titration w/o the KFl is difficult to get to stay in the pink. Also, heavily loaded etches might require additional KFl to tie up the dissolved aluminum to get an accurate analysis.

Willie Alexander
- Colorado Springs, Colorado

April 13, 2010

A. Hello, Dave. The two things that you really want to know in an aluminum etch bath is the free caustic and the total aluminum content that has built up. This is an analysis that I use for a bath that has about a 40 g/L free caustic content and <50 g/L aluminum. The bath that I have used also contains sodium carbonate and sodium gluconate (to chelate the aluminum). You may need to adjust this analysis depending on what you have exactly. I hope this helps.

pipette 2.0 mL, add about 5 mL of 20% BaCl2 (to mask the carbonate if present), titrate with 0.1N H2SO4 to a phenolphthalein colorless endpoint and record the mL as "A".

To the same flask, add about 20 mL of 20% KF (it'll turn pink again), and continue titrating back to colorless. Record this answer as "B"

Free NaOH g/L = (2 x A)- [(B-A) x 0.91125)]

Aluminum g/L = (B - A) x 1.35

Jon Barrows
Jon Barrows, MSF, EHSSC
GOAD Company
supporting advertiser
Independence, Missouri

May 28, 2010

Q. I am still confused.

Using different procedures, I get wildly divergent results.

I gather that there are three bath components that contribute to etching activity: sodium hydroxide, sodium aluminate, and the sodium salt of whatever organic acid they put in the "anti-scale" additive. Is there any simple way of determining each? Is there any way of determining each?

I have found that addition of the anti-scale additive reduces the titrated NaOH concentration substantially. Have others found the same? If so, please inform me.

dave wichern
Dave Wichern
Consultant - The Bronx, New York

October 26, 2014

A. I agree with John Barrows analysis method. That was the method used in Alcan NZ for all three of their anodising plants.

John Arrol
metal Treatment - Singapore

November 11, 2014

Q. Dear friends,
What is the significance of dissolved aluminium in Etching bath? We use NaOH as etchant, does Aluminium play any role in etching bath?

Aijazullah Tajir
- Abu dhabi, UAE

Caustic Etch Analysis

August 14, 2015

Viscosity Tester

Affiliate Link
(your purchases make finishing.com possible)

Q. I started a thread about this a few years back. Had some time to think about it - how to put this on a rational, scientific basis.

How about this: measure the viscosity of the bath with an Ostwald viscometer. Then, dilute the bath with DI water, then add back enough sodium hydroxide to keep the alkalinity constant. Now measure the viscosity again. Repeat this for 10% fresh water + NaOH, 20% fresh water + NaOH, etc. You'd need at least 5 - 6 dilutions, as the relationship between dilution and viscosity will not be linear.

Now, evaluate the etch rate you get from each dilution + NaOH empirically, by etching a test coupon and weighing before and after. Very strict attention would have to be paid to keeping agitation and temperature constant.

Now, you have an idea between viscosity and the effective etch rate. One could measure the viscosity and alkalinity of your working bath and add just enough NaOH to get just the etch rate you wanted.

Why should this be? Well, as the bath ages in service, and sodium aluminate, sodium [anti-scale additive] sodium carbonate, and other crappo build up, the viscosity will change. This will affect the rate at which active etchant diffuses into the work piece/process bath interface zone, and hence the etch rate.

Does this make sense? Has somebody done this already? Am I totally full of beans?

Sounds like a lot of work, too. If I had a place to do it I'd do it for free. Might make a nice article for a trade journal. Also, this problem got under my skin and I would like to solve it.

Thanks in advance for any feedback.

dave wichern
Dave Wichern
Consultant - The Bronx, New York

August 24, 2015

I was hoping for some feedback. Oh, well.

I've changed my thinking about this, a lot.

The etch rate determinations aren't necessary. That eliminates lots of work. I found this great Paper in the Journal of Chem & Eng Data - "Viscosity, Density, and Refractive Index of Aqueous Sodium and Potassium Aluminate Solutions." Answered two questions: is viscosity related to aluminate concentration? and, is the change sharp enough to precisely determine aluminate from viscosity?

Yes, and yes. A solution that's 1.28 M in Al has a viscosity of 2.187 centistokes; for 1.09 M, it's 1.798 centistokes. That's an almost 10% change. Viscosity can be measured very precisely if you have good technique and careful temperature control.

So, to make a long story even longer...take a nice big sample of the etch when it's doing good. Now, take two portions out; dilute one 8% with water, another 4%. Take another (large) portion and stick a weighed Al coupon in. Let a bunch dissolve. Take the coupon out, weigh it. Split the sample in half, stick the weighed coupon back in one of the portions, and let a bunch dissolve. Pull it out and weigh again.

Now, you have 5 samples. Add sodium hydroxide to the diluted, and the Al enriched samples to match the original NaOH concentrations. This is easy to calculate. Measure the viscosity of each. Plot the data on a graph: aluminate vs viscosity. Call the original aluminate "A(sub)0. Then you have 5 points; you still don't know A(sub)0. But you now have two points above, and two below, the original aluminate value. From looking at the graph, you should be able to figure that out.

I'll stop here. I may be boring you all, or my math might be bad.

dave wichern
Dave Wichern
Consultant - The Bronx, New York

finishing.com is made possible by ...
this text gets replaced with bannerText
spacer gets replaced with bannerImages

Q, A, or Comment on THIS thread -or- Start a NEW Thread

Disclaimer: It's not possible to fully diagnose a finishing problem or the hazards of an operation via these pages. All information presented is for general reference and does not represent a professional opinion nor the policy of an author's employer. The internet is largely anonymous & unvetted; some names may be fictitious and some recommendations might be harmful.

If you are seeking a product or service related to metal finishing, please check these Directories:

Chemicals &
Consult'g, Train'g
& Software

About/Contact    -    Privacy Policy    -    ©1995-2022 finishing.com, Pine Beach, New Jersey, USA