Dry friction and wear rates as under liquid lubrication of Ceramic/ Carbon couples up to 450°C

Jens Kleemann Rolls-m i vni The characteristics to form a tribological layer determins the friction and wear behah our of ymers and solid lubricants. The surface roughness of the disk determines the thickness of the transfer film. For each combination so -well-defined and constant environment conditions, like vnacum, hydrogen or nitrogen

consisted from graphite. Characteristic is the selflubricated property of graphite as known from different intrinsic or extrinsic solid lubricants. Various combinations of materials have been tested

in a large u

Spectrum. Scans has been made into the pores and on the wear track (Diagram 8-4). The spectrum of Gardos [41] investigates the characteristic of oxidation of MoS_2 under friction and wear contact. In this connection he characterised also the influence of Hydroxides of friction

Parameter	Couples and Test Conditions						
Disk	Al ₂ O ₃ [A19999.7]	MgO-ZrO ₂ [ZN 40]	SSi ₃ N ₄ [ND 200]	SSiC [EkaSiC D]	WC-6Ni [C7P]	(Ti,Mo)(C,N) [TM 10]]	Stahl 1.4876
3245 o Pin pr ten ateEd	EKE ¹ antimEny imE	EKE 320 ⁵ antimEooy imEprEeEgEr	R 7710 ¹ KEunsEtharl a ieHc prEeEgEr	FEHE 8 ² A EzEantimEooy at am6 EprEeEgEn	FEUE42 ² 451 MEeEntraseE ateEd	ISEOE ⁸ 8E8 MEe Fpitu seE	ZXEF-E5EQ MEeFptmseE
	0E,E0E1E						-E

Picture 8-3 Morphology of the wear track ISO 88 /SSiC, 400°C, H₂O steam, v=3m/s, $F_{\rm n}{=}\,10$ N and s= 20.000 m

Picture 8-5 Morphology of the wear track on MgO-ZrO₂ ceramic with the graphite: left , a) ISO 88 right, b) EK 3245

Number.	1	2	3	4	5	6	7	8	9
manufacturing /	polished	polished	polished	polished	polished	polished	lapped	lapped 50	lapped
grain size	1µm	3µm	6µm	9µm	15µm	15µm	20 µm	μm	80 µm
Roughness R _{pk} [µm]	0,007	0,010	0,011	0,021	0,033	0,035	0,029	0,046	0,183

Diagrami

Picture 8-90 typical piston/ cylinder arrangement of steam engines

9 Literature

Materials based concepts for an oil free engine